We use cookies or similar technologies to personalize your online experience & tailor marketing to you. Many of our product features require cookies to function properly.

Read our privacy policy I accept cookies from this site

Querying Metrics Beta

This feature is available as part of the Honeycomb Enterprise plan.

Metrics data must be ingested as pulse events; see our instructions for ingesting metrics data.

Writing Queries for Metrics Data  🔗

Metrics are stored in Honeycomb’s data store as “pulse events”. They can be queried just like any other data in a dataset. Individual metrics appear as fields on events, whose values are the measurement collected at the timestamp associated with the event. Metric resources and attributes are also stored as fields, so you should be able to use the WHERE and GROUP BY clauses to plot specific timeseries.

Multiple metrics will appear together on the same event if they were received at the same time, have the same timestamp, and share the same set of unique resources and attributes. Find out how Honeycomb converts metrics into pulse events.

Metrics Correlations  🔗

It may be useful to view infrastructure metrics for your systems alongside query results from non-metrics datasets. For instance, a system running out of memory, CPU, or network resources might be the reason for an out-of-compliance SLO or an alerting trigger, and seeing the graph of the problem alongside graphs of relevant system resources could confirm or deny this kind of hypothesis.

The query page has a Metrics tab that allows you to view a selected set of metrics timeseries that cover the same time range as the main query. The timeseries shown can be configured in dataset settings for the main query’s dataset. Correlations can come from a suggested set of metrics, generated by Honeycomb based on the fields in your metrics dataset, or they can come from a Board.

To modify the correlations that are shown for a dataset:

  1. Navigate to the Datasets tab in Honeycomb.
  2. Select Settings on the right side of a dataset’s row.
  3. Under MetricsDisplay metrics in context, use the dropdown to select a source for the Metrics tab for that dataset.

Default Granularity  🔗

Datasets that contain pulse events are periodic: data is captured at a regular, known interval, or granularity. For these Datasets, it’s helpful to ensure that all queries default to using that granularity or higher, which avoids spiky or confusing graphs.

The Default Granularity setting allows you to specify the expected interval for a periodic dataset Queries in this Dataset won’t drop below the default granularity. You can still override the default on any individual queries, if needed.

To modify the Default Granularity setting:

  1. Navigate to the Datasets tab in Honeycomb.
  2. Select Settings on the right side of your dataset’s row.
  3. Under OverviewDefault Granularity, use the dropdown to select the minimum interval for this dataset.